首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   63篇
  国内免费   12篇
测绘学   1篇
大气科学   21篇
地球物理   165篇
地质学   25篇
海洋学   16篇
综合类   6篇
自然地理   82篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   21篇
  2019年   15篇
  2018年   9篇
  2017年   17篇
  2016年   16篇
  2015年   13篇
  2014年   22篇
  2013年   27篇
  2012年   22篇
  2011年   8篇
  2010年   15篇
  2009年   15篇
  2008年   16篇
  2007年   11篇
  2006年   19篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   8篇
  2001年   8篇
  2000年   7篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有316条查询结果,搜索用时 31 毫秒
1.
黑河下游河岸林植物水分来源初步研究   总被引:21,自引:0,他引:21  
通过分析黑河下游极端干旱区荒漠河岸林植物木质部水及其不同潜在水源稳定氧同位素组成(δ18O),应用"同位素质量守恒多元"分析方法初步研究了不同潜在水源对河岸林植物的贡献.结果表明:在黑河下游荒漠河岸林生态系统,在河水转化为地下水和土壤水及水分在土壤剖面再分配的过程中均存在强烈的同位素分馏.对植物水δ18O而言,胡杨、柽柳和苦豆子的δ18O分别为-6.43‰、-6.28‰~和-6.61‰,较苦苣菜(-5.14‰)和蒲公英(-5·52‰)明显偏负.柱状频率图显示胡杨最多能利用93%的地下水,柽柳最多利用90%的地下水.而苦豆子97%水分来源于80 cm土层范围内的土壤水.除0~20 cm土层内的土壤水外,苦苣菜和蒲公英可能还有其他潜在水源.即在黑河下游天然河岸林乔木和灌木较多地利用地下水,而草本植物仍然以地表水为主.  相似文献   
2.
城市河岸土地利用往往改变河岸的自然地理条件,对城市河流功能产生影响。通过总结城市河岸廊道功能以及国内外城市河岸规划土地利用的实践,分析了河岸土地利用对城市河流廊道功能的影响,并以上海苏州河为例进行了实证分析。结果表明,苏州河河岸规划土地利用方式提高了河岸开放带宽度,改善了河岸舒适性,控制了河岸建筑高度,有利于保护和开发苏州河河流的景观、遗产和经济廊道的功能。干流河岸在自然廊道功能方面,仍存在一定缺陷,与支流的部分河段相比仍有差距。  相似文献   
3.
河道沿岸芦苇带对氨氮的削减特性研究   总被引:32,自引:0,他引:32       下载免费PDF全文
氨氮污染已成为我国江河湖库水质下降和水生态系统退化的重要因素之一.借助现场对比观测试验和理论分析的方法,研究不同季节氨氮对河流水质的影响规律,得到了雨洪初期汇流河流水质污染最为严重的结论.系统地研究了沿河岸芦苇带对氨氮的削减净化效应,得到了芦苇带吸附氨氮的主要影响因素为:芦苇生长期、水体污染物浓度、河道流速及气象条件.运用数值模拟和参数优化估算技术,确定氨氮在河道两岸有、无芦苇等植物条件下的衰减系数和削减量,分析了衰减系数的变化规律和削减量大小的影响因素,为河流水生态系统修复和水质预测预报提供科学依据.  相似文献   
4.
Macropores are subsurface connected void spaces caused by processes such as fracture of soils, micro‐erosion, and fauna burrows. They are common near streams (e.g. hyporheic and riparian zones) and may act as preferential flow paths between surface and groundwaters, affecting hydrologic and biogeochemical processes. We tested the hydrologic function of macropores by constructing an artificial macropore within the saturated zone of a meander bend (open macropore, ‘OM’) and later filling its upstream end (partially filled macropore, ‘PFM’). For each treatment, we injected saline tracer at an upgradient monitoring well within the meander and monitored downgradient hydraulics and tracer transport. Pressure transducers in monitoring wells indicated hydraulic gradients within the meander were 32% higher perpendicular to and 6% higher parallel to the macropore for the OM than for the PFM. Additionally, hydraulic conductivities measured via falling head tests were 29 to 550 times higher along the macropore than in nearby sediment. We used electrical conductivity probes in wells and electrical resistivity imaging to track solute transport. Transport velocities through the meander were on average 9 and 21% higher (per temporal moment analysis and observed tracer peak, respectively) for the OM than for the PFM. Furthermore, temporal moments of tracer breakthrough analysis indicated downgradient longitudinal dispersion and breakthrough tracer curve tailing were on average 234% and 182% higher for the OM, respectively. This suggests the OM enabled solute transport at overall shorter timescales than the matrix but also increased tailing. Our results demonstrate the importance of macropores to meander bend hydrology and solute transport. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
Sugarcane is an annual crop with a dynamic canopy that changes over time mainly because of genetic adaptation. There is uncertainty about the temporal trends of throughfall (TF) in this important commercial crop. In the present paper, we used troughs to measure TF in a third and fourth ratoon and subsequently in a fourth and fifth ratoon. Additional measurements were carried out in an adjacent riparian forest. There were no significant differences between cycles of sugarcane, growth phases and riparian forest. The TF results for ratoon crop and riparian forest in 2011/2012 were 76% and 79.5% of gross rainfall, respectively, while in 2012/2013, they were 79% and 78%, respectively. However, TF was remarkably lower in the riparian forest relative to ratoon from the second half of the culm formation and elongation phase (280 days after harvest) until harvest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
6.
Dense understory thickets of the native evergreen shrub Rhododendron maximum expanded initially following elimination of American chestnut by the chestnut blight, and later in response to loss of the eastern hemlock due to hemlock woolly adelgid invasion. Rhododendron thickets often blanket streams and their riparian zones, creating cool, low-light microclimates. To determine the effect of such understory thickets on summer stream temperatures, we removed riparian rhododendron understory on 300 m reaches of two southern Appalachian Mountain headwater streams, while leaving two 300 m reference reaches undisturbed. Overhead canopy was left intact in all four streams, but all streams were selected to have a significant component of dead or dying eastern hemlock in the overstory, creating time-varying canopy gaps throughout the reach. We continuously monitored temperatures upstream, within and downstream of treatment and reference reaches. Temperatures were monitored in all four streams in the summer before treatments were imposed (2014), and for two summers following treatment (2015, 2016). Temperatures varied significantly across and within streams prior to treatment and across years for the reference streams. After rhododendron removal, increases in summer stream temperatures were observed at some locations within the treatment reaches, but these increases did not persist downstream and varied by watershed, sensor, and year. Significant increases in daily maxima in treatment reaches ranged from 0.9 to 2.6°C. Overhead canopy provided enough shade to prevent rhododendron removal from increasing summer temperatures to levels deleterious to native cold-water fauna (average summer temperatures remained below 16°C), and local temperature effects were not persistent.  相似文献   
7.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
8.
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to compare estimates of ET specifically at 3 native vegetation restoration sites during 2014 planned flow events, and MODIS data were used to evaluate long‐term (2002–2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0–10 mm d?1 across sites, and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS‐derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.  相似文献   
9.
Water temperature (Tw) is a key determinant of freshwater ecosystem status and cause for concern under a changing climate. Hence, there is growing interest in the feasibility of moderating rising Tw through management of riparian shade. The Loughborough University Temperature Network (LUTEN) is an array of 36 water and air temperature (Ta) monitoring sites in the English Peak District set‐up to explore the predictability of local Tw, given Ta, river reach, and catchment properties. Year 1 of monitoring shows that 84%–94% of variance in daily Tw is explained by Ta. However, site‐specific logistic regression parameters exhibit marked variation and dependency on upstream riparian shade. Perennial spring flows in the lower River Dove also affect regression model parameters and strongly buffer daily and seasonal mean Tw. The asymptote of the models (i.e. maximum expected Tw) is particularly sensitive to groundwater inputs. We conclude that reaches with spring flows potentially offer important thermal refuges for aquatic organisms against expected long‐term warming of rivers and should be afforded special protection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
10.
李英玉  赵坚  吕辉  陈斌 《水科学进展》2016,27(3):423-429
为揭示低温水影响下的河岸带潜流层的温度场和流场分布特性,利用野外水温水位实时监测试验,研究河岸带潜流层温度场在不同季节、不同空间位置上的分布特性,并利用水温资料计算获得地下水流速。结果表明:河岸带潜流层温度场在夏季和冬季分别呈现出"上暖下冷"和 "上冷下暖"的温度分层现象;通过对温度示踪方法的4种计算方法进行分析比较,得到Hatch相位法计算的地下水流速具有较高的准确性,在2014年12月15—31日时段内流速大小为1.03×10-4~7.96×10-4m/s,在空间上,断面深度增加,地下水流速降低,且不同深度流速曲线接近平行。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号